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Project Overview 
This project provides data and methods to continue to improve modeling of aircraft weight, take-off thrust, and departure 
and arrival procedures within the FAA’s AEDT, as well as the AEDT’s full flight modeling capabilities. Some of the modeling 
assumptions in AEDT are considered to be overly conservative and could be improved by using industry and airport flight 
operation data. Funding for this project will continue to support the implementation of these methods and data in AEDT4. 
To facilitate these efforts, the Georgia Tech team will utilize real-world flight data and noise monitoring data to improve 
departure, full flight, and arrival modeling.  

 
Task 1 - Improved Departure Modeling 
Georgia Institute of Technology  
 
Objective 
Prior research in ASCENT Project 45 provided recommendations for noise abatement departure procedures (NADPs) to be 
modeled in future versions of AEDT. Comparisons were made between NADP profiles within the NADP library to determine 
the differences between each profile. As a result, two profiles were found to best represent the variability among each type 
of NADP. This task aims to investigate the similarities between the recommended NADPs and real-world departure operations 
for multiple airlines and airports.  
 
From October 2021 to September 2022, the focus of the project was to specifically investigate the effects of specific profiles 
and weather conditions on the differences between NADP results and real-world data. This work helped narrow down specific 
parameters in the process of generating noise and performance results that could lead to significant differences between 
AEDT calculations and corresponding real-world results.   
 
Research Approach 
Methodology 
This project previously generated NADPs that could be implemented in AEDT as recommendations for minimizing the effects 
of noise during the take-off portion of a commercial flight. These recommendations were derived from two datasets, 
designated the OpenSky and Threaded Track datasets, which together cover a large number of airports and aircraft. However, 
while the datasets are extensive, they do not capture all variables, such as thrust data for each flight. In addition, the 
Threaded Track dataset, which captures many of the flights, lacks information below an altitude of 1,000 ft, representing a 
significant lack in data. This gap in data leads to questions about how much variability is not being captured by the data and 
whether that variability significantly influences the accuracy of the models generated for recommendations.  
 
To bridge this gap, another dataset, designated Flight Operations Quality Assurance (FOQA) data, was brought for 
comparison with the current data. FOQA represents data on flights from KATL (Atlanta International Airport), complete with 
thrust data and data below 1,000 ft. In addition, we applied weather data from the Automated Surface Observing System to 
determine whether there are any correlations between weather and flights that could cause differences between the flight 
profiles and flight data.  
 
To assess for correlations, a set of Python scripts was used to run cases and compare both performance and noise data. To 
provide a baseline, Boeing 737-800 and 737-900 flights from KATL were used for comparison, as these flights were included 
in all datasets and provide a good representation of a generic commercial aircraft. The data to be compared were separated 
into three categories, as shown in Table 1. In particular, the team sought to assess sound exposure level (SEL) noise contours 
and performance data and to identify differences resulting from weather or profile differences.  
 
  

 

 

 

 



 

 

Table 1. Categories of comparison. FPP stands for Fixed-Point Profile 

DEFAULT PROCEDURAL+WEATHER FPP+WEATHER 

The current profile, as in the 
Aviation Environmental Design 
Tool, using as many defaults as 
possible 

The current profile, but with 
default, averaged weather 
substituted for actual weather 
corresponding to the flight data 

The data from FOQA, instead of 
noise abatement departure 
procedures (NADPs) 

• Using NADP 2-11 and 
STANDARD profiles 

• Weight set to “Alternate 
Weight,” with the load 
factor more indicative of 
real-world flights 

• Reduced thrust 15% 
(RT15) 

• Default, averaged 
weather conditions 
across all airports 

• Using NADP 2-11 and 
STANDARD profiles 

• Weight set to “Alternate 
Weight,” with the load 
factor more indicative of 
real-world flights 

• RT15 
• Weather corresponding 

to real-world data  

• Using FPP defined from 
FOQA data, including 
real-world thrust, 
altitude, weight, and 
ground speed 

• Weather corresponding 
to real-world data  

 
Cases were then run, and flights in each of the categories were compared with each other via pairwise comparisons.  
 
Afterwards, we closely examined the noise contours resulting from the cases. The percentage differences for the metrics of 
area, length, and width were calculated using the following equation: 
 

Δ% =
𝐶𝑎𝑠𝑒 − 𝐷𝑒𝑓𝑎𝑢𝑙𝑡

𝐷𝑒𝑓𝑎𝑢𝑙𝑡  

 
Results and Discussion 
Default vs. Procedural 
We first compared the NADP profile itself and the NADP profile with corrected weather data. Figure 1 shows each of the 
performance metrics compared with the cumulative ground distance and displays how the flights are distributed in this 
comparison.  
 

 

Figure 1. Plots with cumulative track distance. AFE: Above Field Elevation, nmi: nautical mile. 
 
The differences in the metrics represent variation in the flight results solely due to differences in weather conditions. Key 
points in the flights are also highlighted here. The left panel shows differences in the lift-off point resulting from weather 
conditions. The middle panel shows the difference in the thrust cutback point, and the right panel shows the difference in 
ground speed. In Figure 2, the comparison between the AEDT-calculated lift-off and the actual lift-off shows that, in general, 
the NADP profiles underpredict where lift-off is occurring when weather conditions are utilized. Figure 2 also compares the 

 

 

 

 



 

 

weights calculated by AEDT, which were used for both the default and procedural cases, compared with the third FOQA 
weight, demonstrating that the errors in the weights are randomly distributed.  
 

 
 

Figure 2. Comparison of Aviation Environmental Design Tool (AEDT) results and actual results. nmi: nautical mile; FOQA: 
Flight Operational Quality Assurance. 

 
Procedural vs. Fixed-Point Profiles 
For this comparison, the take-off distance is an important metric to assess. Figure 3 shows the difference between the 
take-off distance for the NADP and FOQA, with the same weather data used in both cases. 

 

 

 

 

 



 

 

 
Figure 3. Effects of take-off (TO) distance. NADP: noise abatement departure procedure; nmi: nautical mile; FOQA: Flight 

Operational Quality Assurance; FPP: Fixed-Point Profile. 
 
From these results, it is clear that there are significant differences between the two datasets below 1,000 ft. As shown in 
both the plots and the table, the NADP has the issue of underpredicting short take-off flights and overpredicting long take-
off flights. The plots present the error in altitude and thrust due solely to differences in take-off. Although the plots visually 
show quite a bit of error, further work is needed to determine whether the magnitude of the error is sufficiently significant 
to warrant the creation of additional NADP profiles.  
 
Effects on Noise 
The most important parameters in this project are the noise metrics, and the results indicate a significant effect on noise. 
Figure 4 presents comparisons of the produced noise contours for different weather conditions modeled using the NADP 2-
11 profile with alternate weights and reduced thrust 15. The heatmap displays the SEL difference (dB) between the NADP 2-
11 profile modeled using the default AEDT average airport temperature and actual weather conditions.  
  

 

 

 

 



 

 

Case TEMPERATURE 
(F) 

DEW_P  
(F) REL_HUM WND_SPD 

(KTS) 
Default 63.93 52.46 66.35 6.94 

Low Temperature 32.00 23.00 69.06 5.79 

High Temperature 93.20 64.40 38.76 6.13 

 

 
Figure 4. Noise effects due to temperature. AEDT: Aviation Environmental Design Tool; NADP: noise abatement departure 

procedure; SEL: sound exposure level. 
 

When weather conditions are varied for the high-temperature case, the contour areas diminish in size. This effect may be 
attributed to the combined effects of temperature and humidity differences between the default weather and the actual 
weather used in modeling. This effect is presumably due to the atmospheric absorption and acoustic impedance adjustment, 
which are highly dependent on these weather parameters. Further investigation is needed before any conclusive remarks can 
be made. 

 

 

 

 



 

 

In Figure 5, the effect of headwind on the noise contours is shown. That data indicate that the noise is not significantly 
affected by the headwind, as the noise contours do not visibly change for low-wind vs. high-wind conditions. 
 

Case TEMPERATURE 
(F) 

DEW_P  
(F) REL_HUM WND_SPD 

(KTS) 
Default 63.93 52.46 66.35 6.94 

Low Wind 66.20 64.40 93.93 0.00 

High Wind 60.80 51.80 72.22 12.99 
 

 

 
Figure 5. Noise effects due to wind. AEDT: Aviation Environmental Design Tool; NADP: noise abatement departure 

procedure; SEL: sound exposure level. 
 

 

 

 

 



 

 

Another factor to consider is take-off performance, notably the thrust and lift of each flight and their effects on the noise 
contour. It was found that differences in thrust and lift-off significantly affect the noise contours, but there are also several 
additional factors, such as temperature, that have a lesser effect. In general, as the take-off distance increases, the width of 
the noise contour decreases and the contour length increases.  
 
Although there are differences, it appears as though the noise contours are still constrained to a limited area around the 
airport for the given airport and runway. In both cases, the 90-dB contour remains isolated inside the airport and does not 
extend outside the airport. However, there are substantial changes for some of the 80- and 85-dB contours. It may be useful 
to further examine these contours in future work.  
 
The SEL curves and contours are reasonable and indicate that the process and results for determining the SEL are suitable. 
Work will be continued along these lines in order to better compare the differences currently observed between real-world 
flights and NADP results. In particular, we plan to examine day–night average sound level contours, using AEDT to generate 
airport-level contours by aggregating flights from each of the three aforementioned categories and comparing them with 
each other and SEL results. This work will provide further details about these differences and their sources.  
 
Milestone(s) 

• None 
 
Major Accomplishments 

• Acquired relevant weather and real-flight data for comparing NADP profile results to actual flights 
• Created experiment cases based on NADP profiles, real-world weather, and actual flight data and generated noise 

results through AEDT 
• Analyzed SEL contours to determine factors for noise and performance differences between NADP profiles and 

real-world flights 
 
Publications 
None 
 
Outreach Efforts 
Biweekly calls 
Bi-annual ASCENT meetings 
 
Awards 
None 
 
Student Involvement 

• Jirat Bhanpato and Howard Peng (Graduate Research Assistants, Georgia Institute of Technology) participated in 
this research. 

 
Plans for Next Period  

• Perform airport-level analyses to compare differences in performance and noise due to weather and profile 
differences. 

• Investigate any resulting significant differences. 

 
Task 2 - Arrival Profile Modeling 
Georgia Institute of Technology 
 
Objective 
The AEDT currently models arrival profiles using specified fixed-point trajectories or manufacturer-provided procedures. In 
Task 2, we compare data from real-world flights to the AEDT models to make recommendations on how to improve AEDT 
models to better capture real-world operations. 
 

 

 

 

 



 

 

The objective of Task 2 is to identify and develop recommendations for AEDT that will allow it to better capture aircraft 
behavior during arrival. The specific focuses of this task are to (a) accurately capture the arrival of aircraft at airports based 
on real-world data and (b) enhance the ability of AEDT to model aircraft approaches and classify them as one of several 
arrival profiles suggested by analyses of real-life data. The goals for this period were to perform clustering based on the 
optimal clustering algorithm and to verify the sensitivity of the clusters by executing arrival profile modeling in AEDT. At the 
end of this project, recommendations will be made regarding which AEDT arrival profiles should be integrated into the 
system and what information those profiles should include. 
 
Research Approach 
Methodology 
In the previous year, it was determined that clustering would be the best method for accomplishing the goals of this task, 
as this approach reduces the number of individual arrival flights to be analyzed. A range of potential algorithms that could 
be used to perform clustering were identified, as shown in Table 2, each with a different mathematical approach and 
formulation.  

Table 2. Exploring clustering algorithms. 
 

Method Details Advantages Disadvantages 

K-Means Distance-based Fastest algorithm; 
tighter clusters compared 
with hierarchical methods 

Requires knowledge of the 
number of clusters 

K-Medoid Distance-based  More robust to noise compared 
with K-Means 

Assumes spherical data; requires 
knowledge of the number of 
clusters 

Agglomerative Hierarchical Orders objects Requires knowledge of the 
number of clusters 

DBSCAN 
(Density-Based 
Spatial 
Clustering of 
Applications 
with Noise) 

Reachability- 
and density-based 

No need to pre-specify the 
number of clusters 

Does not handle 
different densities well 

Mean Shift Centroid-based No need to pre-specify the 
number of clusters 

Cannot control the number 
of clusters 

OPTICS 
(Ordering 
points to 
identify the 
clustering 
structure ) 

Reachability- 
and density-based 

Handles different densities better 
then DBSCAN; no need to pre-
specify the number of clusters 

Slower than DBSCAN 

BIRCH 
(Balanced 
iterative 
reducing and 
clustering 
using 
hierarchies) 

Hierarchical Faster than other 
hierarchal algorithms 

Slower than K-Means;  
requires knowledge of the 
number of clusters 

 
After identifying the best clustering method, trends in cluster allocation were studied. The distribution of cluster points 
aided in recognizing how the data can be generalized for AEDT recommendations. Eight metrics were explored for this 
purpose: (1) level-off height, (2) level-off length, (3) level-off distance to airport, (4) total flight distance, (5) level-off delta V, 
(6) longitude, (7) latitude, and (8) airport altitude. The clusters had similar behavior across these metrics and led to a reduced 
number of points for AEDT generalization. As shown in Figure 6, the largest level-off heights (ft, Above Ground Level (AGL)) 

 

 

 

 



 

 

occurred in 3 of the 20 clusters (clusters 7, 12, and 19). Clusters 0–3 and 15–17 were similar to each other, with similar 
trends for the level-off height, length, and distance to the airport. In Figure 7, the level-off delta V was rounded to the nearest 
multiple of 10 knots. Here, more differences were observed between clusters 0–2 and 15–16. 
 

 
 

Figure 6. Point distribution of clusters for level-off height. 
 

  
 

Figure 7. Point distribution of clusters for level-off delta V. 
 
Visualizations were created to assess how the clustering is affected by geography. The goal of the visualization was to plot all 
clusters on a map to visually determine whether there were clear groupings of airport arrival patterns within clusters. Tableau 

 

 

 

 



 

 

was used to construct the map-based visualization. To verify the sensitivity of the clusters, arrival modeling was performed 
with AEDT, comparing the centroid of each cluster to the default STANDARD profile. The nature of all clusters was determined 
by comparing the environmental metrics obtained from the results of arrival modeling. The modeling gave the range of level-
off parameters, i.e., the minimum and maximum of each level-off parameter. 
 

Table 3. Procedural definition of random flights from cluster 2 arrival operation for the Boeing 737-800 at KATL. 

Step	 Flap	ID	 Step	Type	 Altitude	(ft)	 Calibrated	
Airspeed	(knots)	 Distance	(ft)	 Glide	Slope	

1	 A_00	 Descend	 8,400	 249	 	 3	
2	 A_00	 Level	 5,400	 250	 21,500	 	
3	 A_01	 Level	 5,400	 246	 3,671	 	
4	 A_05	 Level	 5,400	 243	 5,209	 	
5	 A_15	 Descend	 5,400	 240	 	 3	
6–9	 Same	as	Default	 Same	as	Default	 Same	as	Default	 Same	as	Default	 Same	as	Default	 Same	as	Default	

 
Results and Discussion 
K-Means and BIRCH were identified as the best clustering methods based on three quantitative scoring metrics that indicate 
the quality of the identified clusters: the silhouette score, Davies–Boudlin index, and Calinski–Harabasz index. The clustering 
score comparisons are shown in Figure 8. After the clustering methods were selected, they were implemented on a test 
dataset consisting of all level-offs from the three busiest airports in the full dataset to determine the primary features that 
significantly affect level-off parameters.  
 

 
 

Figure 8. Score comparisons for a test dataset. CH: Calinski–Harabasz; DB: Davies–Boudlin; DBSCAN: Density-Based Spatial 
Clustering of Applications with Noise; OPTICS: Ordering points to identify the clustering structure; BIRCH: Balanced 

iterative reducing and clustering using hierarchies. 

 

 

 

 



 

 

The cluster distribution was plotted against the chosen metrics for three types of datasets: test, small, and large. It was 
observed that the cluster distributions were similar for the test and large datasets, with a poor correlation between the 
metrics for small and large datasets. Figure 9 shows the cluster distribution for the BIRCH algorithm across 10 clusters for 
a complete dataset. The y-axis consists of the percentage for each cluster, and the x-axis gives the cluster label (0–9). The 
plot shows that BIRCH has one prominent cluster in which a significant number of points are distributed. Figure 10 shows 
the cluster distribution for the K-Means algorithm (10 clusters) applied to a complete dataset. The axis definitions are the 
same as those in Figure 9. The plot shows that the K-Means distribution is spread more evenly than the BIRCH distribution. 
 

   
Figure 9. Cluster distribution for the BIRCH algorithm. 

 
Figure 10. Cluster distribution for the K-Means algorithm. 

 

 

 

 



 

 

Tableau was selected as the platform to produce data visualizations as a dashboard. The dashboard includes the locations 
of airports on a U.S. map, displaying cluster distributions, airport diagrams, scatter plots of level-off length vs. height, 
histograms for level-off fields vs. flight counts at each airport, the distribution of flights across clusters, centroids for each 
cluster, etc. As shown in Figure 11, data for a specific airport are filtered, and the histograms contain detailed flight counts 
for different metrics, which are useful for analyzing the flights arriving at an airport. 
 

   
 

Figure 11. Tableau comparing KSEA (Seattle-Tacoma International Airport) and KMCI (Kansas City International Airport). 
BIRCH: Balanced iterative reducing and clustering using hierarchies 

A study was designed in AEDT to understand and quantify the sensitivity of performance, noise, and emission metrics to the 
level-off definitions yielded by the clustering results. The default STANDARD arrival was compared with Random Flight 1 and 
Random Flight 2 arrivals at KATL. It was observed that Cluster 2 had a larger area for the 65-, 70-, and 75-dB contours, which 
was likely due to the shorter level-off lengths of Random Flight 1 and Random Flight 2. 
 

 

Figure 12. Example of cluster centroid vs. randomly clustered flights. 

The clustering shown here indicates reasonable allocations for the level-off data. The sensitivities also produce results that 
are aligned with expectations. Thus, the next steps are to assess the sensitivities in detail, confirm the results and parameters 

 

 

 

 



 

 

that differentiate the clusters, and start moving the task closer to making recommendations for arrival profile 
implementation. In the next year, the efforts of ASCENT 43 will be merged with Task 2 of ASCENT 54. With this merge, the 
modeling of Noise-Power-Distance data (NPDs) for multiple speeds and configurations will also be considered within this 
task. 
 
Milestones 
None 
 
Major Accomplishments 

• Identified K-Means and BIRCH as the best clustering methods based on three quantitative scoring metrics 
• Analyzed cluster distribution by plotting against set metrics and identified K-Means as having a uniform spread of 

distribution 
• Created visualizations in Tableau to compare cluster parameters and geographical distribution parameters 
• Determined the sensitivity of the clusters by performing arrival modeling on AEDT while maintaining the cluster 

centroid as the default 
 
Publications 
None 
 
Outreach Efforts 
Biweekly calls 
Bi-annual ASCENT meetings 
 
Awards 
None 
 
Student Involvement 

• Keletso Mmalane and Anushka Moharir (Graduate Research Assistants, Georgia Institute of Technology) 
participated in this research. 

 
Plans for Next Period  

• Continue to analyze variability in environmental metrics from profiles in all clusters. 
• Use percentiles of each level-off parameter for modeling instead of five randomly selected values. 
• Include the modeling of speed- and configuration-dependent Noise Power Distance data (from ASCENT 43).  

 
Task 3 - Full Flight Modeling 
Georgia Institute of Technology 
 
Objective 
This task aims to improve the usability of the full flight modeling within AEDT without employing the often complicated and 
time-consuming process of using the sensor path functionality that is the current standard for AEDT. In the previous year, 
Task 3 attempted to verify the notion that the use of threaded track data as an input to AEDT full flight modeling could be 
validated by comparison to actual/historical flight data provided via FOQA datasets. Ideally, proper comparisons would 
validate the use of thread track data as a source for determining typical routing between city pairs and substantiate the 
associated fuel consumption models using either Base of Aircraft Data (BADA) 3 and/or BADA4 datasets. A successful 
validation would provide an alternative to the more laborious and time-consuming use of sensor path data. 
 
The results of the work completed during the last year have led to a proposed re-definition of the approach that may be 
most appropriate for AEDT to support simplified, yet statistically valid modeling of the National Airspace System flight 
frequency and cumulative fuel burn/emission analysis. This approach utilized a more rudimentary method, such as the great-
circle distance (GCD) + % additive correctly integrated with seasonal wind/temperature history. This analysis was enabled by 
the supplementary tool set PaceLab Mission Suite (PLMS). PLMS has integrated seasonal wind data that are not currently 
available in the AEDT system via Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2). 

 

 

 

 



 

 

In addition, based on the results of the work completed in the past years, the Georgia Tech team recommends that a new 
AEDT functionality be developed to allow for the input of statistical wind histories (MERRA-2 datasets are too granular for 
large-scale studies). As an alternative, it is proposed that AEDT be modified to allow for fixed input wind/temperature models. 
According to a discussion with the Volpe development team, it may be possible to accomplish this effort by using the existing 
software structure. The creation of a “nominal” wind/temperature dataset as a default may provide a solution. 
 
While each of these recommendations would need further investigation and vetting, the overall approach would allow for the 
use of GCD + % system modeling in a rapid and efficient manner to provide statistically valid modeling of National Airspace 
System route densities and cumulative emission analyses. 
 
The report material is subdivided into the following areas with corresponding methodology, results, and discussion sections:  

• Great Circle Route Planning 
• Seasonal Average Wind Model 

 
Research Approach 
Investigation 1. Alternative Methodology: Great Circle Route Planning 
 
Methodology 
An alternative approach has been taken to demonstrate that a simplified route based on seasonal wind averages can provide 
a statistically valid prediction for time and fuel. This alternative approach was chosen because AEDT’s weather data modeling 
hinder AEDT’s time and fuel predictions when using a single notional route vs. actual flight histories. We used the PLMS tool 
to compare actual FOQA flight histories. The PLMS tool is a commercial tool for route and aircraft economic analysis and 
produces metrics such as payload capacity, maximum range, trip time, and fuel burn by flight segment. Because the aircraft 
performance modeling of the PLMS tool is derived from the Original Equipment Manufacturer (OEM) dataset and the wind 
data are based on the Boeing commercial model, the PLMS is a suitable tool for comparing real FOQA flights. As a proof of 
concept, we performed a sensitivity analysis between the FOQA flights and the range of GCD + % variance using the PLMS 
tool. 
 
Results and Discussion 
In the first step, we determined how well the predicted trip distance matches the FOQA flight histories within the cluster 
obtained in Investigation 2 by adding some variance to the GCD in the PLMS tool. Histograms were generated for city pairs 
and used to find the closest trip distance obtained using the PLMS tool with respect to the actual flight histories. We added 
25 nautical miles to the analysis with the PLMS tool, considering the influence of vectoring by air traffic controllers near 
departure or arrival airports. 
 
Error! Reference source not found.The histogram bin width was set to 5 nautical miles, and the results of a sensitivity 
analysis of trip distances for KATL-KSEA-KATL are shown in the histogram in Figure 13. The red vertical dotted line represents 
the median trip distance of FOQA flights within the cluster. The blue and purple vertical dotted lines show the GCD + 3% and 
5% variance, respectively, as the trip distance predicted by the PLMS tool. The histogram is not a perfect bell shape, especially 
for KSEA-KATL, because the FOQA data do not include all flights for a given city pair over a selected time period. However, 
considering the limitations of the FOQA data, it is still possible to compare the trip distance representing the actual FOQA 
flights. As shown in Figure 13, for the histogram of KATL-KSEA-KATL, the GCD + 3% gives the trip distance closest to the 
median trip distance of the FOQA flights within the cluster. Moreover, the median trip distance of the FOQA flights for KSEA-
KATL is larger than the median trip distance of the FOQA flights for KATL-KSEA due to wind conditions during the flight.  
 

 

 

 

 



 

 

 
 

Figure 13. Histogram from a sensitivity analysis of trip distance for KATL-KSEA (left) and KSEA-KATL (right). nm: nautical 
mile; PLMS: PaceLab Mission Suite. 

The histograms in Figure 14 display the average wind distribution for FOQA flights within the cluster. The red vertical dotted 
line is the median of the average wind of the FOQA flights. The blue dotted line is the wind condition with 50% reliability 
obtained by the PLMS tool. There is no significant difference between the red and blue dotted lines. The average wind 
condition is always positive for KATL-KSEA, whereas the average wind condition for KSEA-KATL is always negative except for 
one case. The headwind conditions during the flight for KATL-KSEA lead to a greater trip distance. 
 

    
 

Figure 14. Histogram for sensitivity analysis of average wind conditions for KATL-KSEA (left) and KSEA-KATL (right). HW: 
headwind; PLMS: PLMS: PaceLab Mission Suite; TW: tailwind; FOQA: Flight Operational Quality Assurance.  

 
Error! Reference source not found.The results of a sensitivity analysis for the trip distance between FOQA flights and the 
PLMS product are given in Table 4. The GCD + 3% variance shows the smallest error compared with the median trip distance 
of the FOQA flights for all identified city pairs. KATL-KSEA and KSLC(Salt Lake City International Airport)-KLAS(Las Vegas 
International Airport) have the most significant error of 1.9% for the comparison between the median trip distance of the 
FOQA flights and the GCD + 3% variance obtained by the PLMS tool.   
 
  

 

 

 

 



 

 

Table 4. Sensitivity analysis of the trip distance between FOQA flights and the PaceLab Mission Suite tool. 
 

 
 

 
 

Figure 15. Comparison of the total fuel burn between FOQA flights and results obtained via the PLMS tool for KATL-KSEA. 
GCD: great-circle distance; PLMS: PaceLab Mission Suite. 

In the previous step, the GCD + 3% variance obtained via the PLMS tool gave the closest representation of the actual FOQA 
flights. Therefore, the cumulative total fuel burn and wind based on the GCD + 3% variance from the PLMS tool were predicted 
and compared with values for actual FOQA flights. The PLMS analysis results based on GCD + 3% variance consistently 
correlate with actual FOQA fuel burn data and wind predictions. As shown in Figure 15, the total fuel burn data for FOQA 
flights are consistently scattered around an estimate of the trip fuel for each aircraft obtained via the PLMS tool, with an 
influence from aircraft performance and structural limits. 
 
Investigation 2. Alternative Methodology: Seasonal Wind Model 
 
Methodology 
A direct comparison of AEDT’s time and fuel predictions based on notional single routes vs. actual flight histories is 
hampered by AEDT’s weather data modeling. A simplified route based on seasonal wind averages could enable an alternative 
approach to provide statistically valid predictions for time and fuel. This task aims to develop a weather model representing 
seasonal averages compatible with AEDT. 
 
AEDT can use high-fidelity, airport annual average, and International Standard Atmosphere (ISA) weather data for 
performance modeling used for noise and emission modeling. MERRA-2 is one of the high-fidelity weather data sources that 

 

 

 

 



 

 

AEDT can use. MERRA-2 covers the world and has a grid resolution of 0.5 degrees in latitude and 0.625 degrees in longitude. 
MERRA-2 data files are provided in netCDF-4 format. AEDT takes weather information from the MERRA-2 instantaneous 
weather data according to a specified location and time. From MERRA-2, seven variables are retrieved, including temperature, 
geopotential height, specific humidity, eastward wind, northward wind, surface pressure, and sea-level pressure.  
 

 
 

Figure 16. Procedure for data fusion (e.g., summer). 

AEDT uses “inst3_3d_asm_Np” weather files for three-dimensional weather data and “inst1_2d_asm_Nx” weather files for 
surface (two-dimensional) weather data. However, “instU_3d_asm_Np” and “instU_2d_asm_Nx” are used to develop seasonal 
weather models because of the convenience and computational cost of averaging the variables through Python code. 
“instU_2d_asm_Nx” and “instU_3d_asm_Np” give instantaneous two- and three-dimensional monthly diurnal means in MERRA-
2, respectively. “instU_3d_asm_Np” contains variables that define the dimensions of longitude, latitude, and time at 42 
pressure levels. The data in “instU_3d_asm_Np” are collected every 3 hr, starting from 00:00 UTC. (i.e., 00:00, 03:00, ..., 
21:00 UTC). 
 
The procedure for developing a seasonal model is shown in Figure 16. Data from 2016 to 2020 were downloaded and 
divided according to the corresponding seasons as follows: 
 

• Winter: December, January, and February 
• Spring: March, April, and May 
• Summer: June, July, and August 
• Fall: September, October, and November 

 
For example, let us suppose that we are creating a summer seasonal weather model. As mentioned above, each variable in 
the data has dimensions of time (8) x pressure level (42) x latitude x longitude. In the first step, average values are computed 
over the eight time frames in each data collection to create dimensions of pressure level (42) x latitude x longitude. The next 
step calculates the average values for the summer months of June, July, and August. All steps are implemented via Python 
code and use the “NC$WXEditorWPF.exe” application to ensure that the generated file format is correct. Lastly, a fuel 
consumption study is performed in AEDT using the FOQA trajectory input to compare the total fuel burn based on different 
weather data sources. 
 
 
 
 
 
 

 

 

 

 



 

 

Results and Discussion 
 

     
 

Figure 17. Total fuel burn comparison for KATL-KSEA. BADA: Base of Aircraft Data; ISA: International Standard Atmosphere; 
FOQA: Flight Operational Quality Assurance. 

 
 

Figure 18. Total fuel burn comparison for KSEA-KATL. BADA: Base of Aircraft Data; ISA: International Standard Atmosphere, 
FOQA: Flight Operational Quality Assurance. 

The cumulative fuel burn was compared using AEDT modeling with different weather data types. Figures 17 and 18 compare 
the fuel burn for KATL-KSEA and KSEA-KATL, respectively. In each figure, the left plot is the fuel burn computed by BADA3 
modeling, and the right plot shows the fuel burn obtained by BADA4 modeling. The B739 airframe type was used in these 
comparisons. Note that only the en-route phase of the flight (FL100, >10,000 ft) is considered.  
 
The four different weather data types compared in each figure are as follows: 

1. ISA (yellow) 
2. MERRA-2 instantaneous weather data (blue) 
3. Type I seasonal weather data, considering the time frame, time (8) x pressure level (42) x latitude x longitude 

(green) 
4. Type II seasonal weather data, disregarding the time frame, pressure level (42) x latitude x longitude (red) 

 
In Figures 17 and 18, each point represents the total fuel burn for one flight. The location of each point along the x- and y-
axes denotes the cumulative fuel burn for the flight in FOQA data and the AEDT model based on different weather data, 
respectively. The figures also show a solid black line for which the values along the horizontal and vertical axes are equal; if 
a data point falls on this line, the total fuel burn predicted by AEDT matches the total fuel burn reported by FOQA data.  

 

 

 

 



 

 

According to Figures 17 and 18, the total fuel burn predicted using the instantaneous MERRA-2 weather data that matches 
the date of the FOQA flight is generally most similar to the total fuel burn obtained from FOQA data. This finding is consistent 
with the basic expectation that the instantaneous MERRA-2 weather data most closely track the actual values recorded in the 
FOQA data. The blue trend line generated from the blue dots (predicted from MERRA-2 instantaneous data) shows a slope 
similar to that of the solid black line, where the total fuel burn between FOQA and AEDT modeling is equal, especially for 
BADA3 modeling. The gap between the two lines arises because the fuel required from FOQA data may vary substantially 
depending on factors such as engine degradation and the status of engine maintenance. 
 
In addition, the ISA dataset underpredicts the fuel required for westbound flights (KATL-KSEA) because it does not consider 
actual headwinds (i.e., higher value of equivalent static air miles). Moreover, the ISA dataset overpredicts the fuel required 
for eastbound flights (KSEA-KATL) because it does not take advantage of the tailwind (smaller value of equivalent static air 
miles). Moreover, when ISA weather data or seasonal weather models are applied, the fuel burn prediction based on BADA3 
modeling is closer to the total fuel burn obtained from FOQA data than the fuel burn prediction based on BADA4 modeling. 
 
We note that minor differences in fuel burn prediction arise when two types of seasonal weather models are used (types I 
and II), as shown by the green and red dots in Figures 17 and 18. Therefore, only type II models are recommended for the 
seasonal average weather because of the convenience in data processing.  
 

    
 

Figure 19. Total fuel burn comparison between FOQA and Aviation Environmental Design Tool modeling. BADA: Base of 
Aircraft Data; FOQA: Flight Operational Quality Assurance. 

The total fuel burn was compared between FOQA and AEDT modeling using different weather data sources. The legend in 
Figure 19 is as follows. 
 

• FOQA: Black 
• BADA3 modeling with MERRA-2 instantaneous weather data: Blue 
• BADA4 modeling with MERRA-2 instantaneous weather data: Green 
• BADA3 modeling with type II seasonal weather data: Yellow 

 
Numerous cases/conditions produced fuel flow discontinuities (high fuel flow over a short time period) in the AEDT output, 
resulting in a step function additive to the integrated fuel burn when the BADA4 model is used with MERRA-2 instantaneous 
weather data. This behavior was not observed when BADA3 was used with MERRA-2 instantaneous weather data. Moreover, 
discontinuity segments did not appear in the total fuel burn calculation for BADA4 modeling with type II seasonal weather 
data. Further investigation into these BADA4 discontinuities will be implemented. 
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Major Accomplishments 
• Conducted sensitivity analysis between FOQA flights and a range of GCD + % variance using a 

supplementary/independent route analysis tool: PLMS 
o PLMS route fuel burn analysis integrates historical seasonal wind data and applies reliability factors. 

• Based on the success of the PLMS analysis, developed a weather model (i.e., wind) representing seasonal averages 
compatible with AEDT 

o This modeling was derived from publicly available MERRA-2 datasets. 
• Generated two supplemental reports:  

o ASCENT Project 054: AEDT Evaluation and Development Support 
o ASCENT Project 054: Supplementary AEDT Functionality Analysis 

 
Publications 
None 
 
Outreach Efforts 
Biweekly calls 
Bi-annual ASCENT meetings 
 
Awards 
None 
 
Student Involvement 

• Hyungu Choi and Jirat Bhanpato (Graduate Research Assistants, Georgia Institute of Technology) participated in 
this research. 

 
Plans for Next Period  

• Continue investigating causes of BADA4 discontinuities in the BADA4 fuel burn calculation. 
• Further investigate GCD + % system modeling. 
• Develop alternative aircraft routing history data sources (System Wide Information Management, OpenSky, 

FlightAware Research Hub) to replace consistent sourcing of FOQA data from airlines, which is problematic. 

 
Task 4 - System Testing and Evaluation of AEDT 
Georgia Institute of Technology 
 
Objective 
To provide the best possible environmental impact modeling capabilities in AEDT, the FAA Office of Environment and Energy 
continues to develop AEDT by improving existing modeling methods and data and adding new functionalities. The FAA Office 
of Environment and Energy seeks an independent effort in system testing to evaluate the accuracy, functionality, and 
capabilities of AEDT and to support future model development. The objective of this task is to provide the FAA with high-
quality systematic testing and evaluation of the capabilities of AEDT 3 and its future releases and to identify gaps in the 
tools’ functionality and areas for further development. 
 
Research Approach 
Within this task area, the Georgia Tech research team has been coordinating with the FAA and Volpe National Transportation 
Systems Center on upcoming AEDT features and testing and evaluating newly incorporated capabilities. For each AEDT 
release, depending on the update type, key features and functionalities are identified for capability demonstration to ensure 
that the implemented features are working properly. We are then either provided with or define for ourselves the scope and 
test cases for the system testing and evaluation effort. These cases are typically defined based on the key changes to the 
AEDT version from the previous releases. Due to the dynamic nature of the AEDT development process, we remain flexible 
in the choice of the testing and evaluation approach and the scope of our work. The best available methods and data are 
used to ensure accuracy in the functionalities of newly released AEDT versions. When required, uncertainty quantification 

 

 

 

 



 

 

analysis is conducted to understand the sensitivities of output responses to variation in input variables and to quantify the 
major contributors to output uncertainties. 
 
In the following subsections, the various features and functionalities that were tested from October 2021 to September 2022 
are described. In addition, various bugs were identified, reported, and re-tested to support the AEDT development process. 
 
AERMOD Performance Updates 
AEDT’s American Meteorological Society/Environmental Protection Agency regulatory model (AERMOD) module performs 
modeling of pollutant dispersion within short distances of industrial sources, and its integration into the software enables 
higher-fidelity emission analyses. This task aimed to discern the extent to which AERMOD taxes computer memory in its 
calculations and to identify specific computational bottlenecks in these processes.  
 
Testing was conducted through the creation of a large-scale study featuring over 1.5 million arrival and departure operations 
split across Auxiliary Power Units (APUs) and Ground Support Equipment (GSEs). AERMOD’s involvement in emission 
calculations was monitored using software designed to track memory usage at important computational junctures and 
compared with results from both prior tests and varying study settings. 
 
Results demonstrated a 15% improvement in overall AERMOD efficiency relative to prior AEDT releases, but these outcomes 
were localized only to cases involving emission dispersion calculations (rather than inventory tabulations). 
 
Touch-and-Go/Circuit Profile Development 
This task focused on the development of touch-and-go and circuit profiles for two new aircraft in AEDT 3e, namely the 7879 
and 747-400RN, using the existing approach and departure procedures as the baseline. This development was performed 
for both Aircraft Noise & Performance database (ANP) fixed-wing civil aircraft with defined procedural profiles, and the 
developed profiles were provided to the AEDT development team for integration into the FLEET database. 
 
Profiles were created using programming scripts to copy appropriate steps from the relevant departure or arrival profile. All 
created profiles were tested for accuracy by modeling noise metric results over a noise grid. 
 
Ability to Import Flight Operations from CSV Files 
This feature adds the ability to import aircraft operations and tracks from CSV input files into an existing AEDT study via 
both the graphical user interface (GUI) and command line tool. Incorporation of this option into AEDT streamlines the process 
of setting up large studies by eliminating the need to directly interface with the underlying Structured Query Language (SQL) 
database containing operations and their properties. 
 
We performed testing by attempting to import a series of both properly and improperly formatted aircraft and helicopter 
operation CSV files. Results indicated proper feature functionality, with both GUI and command line interfaces importing 
correct operations and rejecting improperly formatted files. 
 
View/Edit Individual Tracks 
This feature focused on testing the new track visualization updates in AEDT 3e, which allowed the user to generate the full 
airport layout, only the ground elements, or only selected tracks with ground elements and interact with each of these layers 
in the airport designer. Additionally, the user can now change the maximum number of tracks that can be displayed at one 
time in the AEDT settings menu.  
 
A large study containing tens of thousands of tracks was used for testing purposes. Most of the visualization tests (e.g., 
generating all layout options, testing track selection availability, testing the maximum number of tracks) were successful, 
with the exception of a few small display issues in the AEDT user interface that were identified as bugs. Furthermore, due to 
machine limitations, the maximum track number setting was changed from 25,000 to 100 when the visualization was 
performed in the GUI. The correct warning and error messages were displayed when the user tried to visualize more tracks 
than the actual maximum setting.  
 
Updated Start-of-Takeoff-Roll Noise Directivity 
Updates to the International Civil Aviation Organization (ICAO) methodology for noise directivity calculations necessitated a 
corresponding change to AEDT’s noise maps for all affected aircraft. These modifications were examined by comparing the 

 

 

 

 



 

 

take-off noise contours of all airplanes in the FLEET database between a prior and current AEDT version. A full cross-
examination of all AEDT aircraft demonstrated a consistent shift in noise directivity in the current release, in line with ICAO 
specifications. The typical extent of ICAO’s alterations is apparent in Figure 20, which presents modeling results of aircraft 
departure from the KATL airport.  
 

 
Figure 20. Previous and current 737-800 noise contours. nmi: nautical mile. 

Milestones 
None 
 
Major Accomplishments 

• Conducted several detailed investigations and testing efforts for system testing of new AEDT features 
• Completed the first draft of a comprehensive Uncertainty Quantification report, currently being reviewed by the FAA 

 
Publications 
None 
 
Outreach Efforts 

• Bi-weekly calls  
• Attendance at bi-annual ASCENT meetings 
• Attendance at the American Institute of Aeronautics and Astronautics Aviation Conference and OpenSky Symposium 

to present conference papers 
 
Awards 
None 
 
Student Involvement  
Bogdan Dorca and Santusht Sairam (graduate research assistants, Georgia Institute of Technology) participated in this 
research. 
 
Plans for Next Period 

• Continue system testing efforts to support ongoing AEDT development. 
• Revise the Uncertainty Quantification report draft based on FAA feedback and finalize the draft for publication. 

 

 

 

 

 


