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Project Overview
Contrails are white, line-shaped ice clouds that form behind aircraft. Contrails and subsequent contrail cirrus are thought to 
account for approximately one half of the climate warming attributable to aviation. Contrail avoidance through vertical and 
horizontal flight path changes is estimated to cause fuel burn penalties of a few percent. Thus, contrail avoidance is a 
potentially cost-effective way to mitigate the climate impacts of aviation. However, contrail avoidance has not been 
demonstrated at scale, and a comprehensive toolset to support this approach has not been developed. The goal of this 
project is to create a contrail avoidance decision support and evaluation tool that can be utilized to optimize and evaluate 



 
 

the benefits, costs, and practicality of contrail avoidance. In addition, subject to agreement with industry partners, we will 
seek to test contrail avoidance in a way that has no implications for air traffic control or safety. 
 
This project aims to satisfy four specific objectives: (a) develop the capabilities necessary to predict the formation and 
impacts of contrails from a given flight, (b) evaluate the financial costs and environmental benefits of deviating from a given 
path to avoid a contrail, including uncertainty, (c) integrate these capabilities into an operational tool that can provide near-
real-time estimates of the costs and benefits of a contrail avoidance action, informed by automated, coordinated 
observational analysis and modeling, and (d) evaluate the effectiveness of these tools in a safe, scientifically sound real-
world experiment. 
 
The objectives outlined above will be met through a work program that comprises the following tasks: 
 

1. Contrail Forecast Module 
2. Contrail Identification Module 
3. Contrail Radiation Module 
4. Trajectory Planning Module 

 
The following tasks will be included under future periods of performance (not funded through the current submission) and 
will provide an outlook for follow-on work in future project years. 
 

5. Cost–Benefit Evaluation Module 
6. Airline Integration 
7. Experiment Evaluation Module 

 
The remainder of this document presents a description of the first four tasks, including research progress and next steps. 

 
Task 1 - Contrail Forecast Module 
Massachusetts Institute of Technology 
 
Objective 
The goal of Task 1 is to develop a contrail forecast module that predicts the likelihood of persistent contrail-forming 
conditions one day ahead, in the hours before the flight, and in real time during a flight. This module is intended to allow 
airlines to decide ahead of time whether flights may wish to use contrail avoidance, to file flight plans accounting for the 
best estimated cruise altitude, and to adjust in real time (subject to pilot workload and air traffic control constraints).  
 
Research Approach 
Prediction will be performed using a combination of U.S. agency meteorological forecasts and observational data, including 
prior satellite observations of contrails from earlier flights. We will begin by using meteorological data from the NASA Global 
Modeling and Assimilation Office Goddard Earth Observing System (GEOS) Forecast Product, which has a moderate resolution 
(0.25° latitude by 0.3125° longitude globally) and provides new 5- and 10-day forecasts each day (Rienecker et al., 2008). As 
the project progresses, we will evaluate regional products such as the National Oceanic and Atmospheric Administration 
High-Resolution Rapid Refresh (HRRR) system to provide greater resolution over the United States. 
 
Evaluating existing forecasts 
We evaluated the capability of existing numerical weather prediction (NWP) models to forecast persistent contrail formation 
areas (PCFAs). This evaluation was achieved by transforming the meteorological variables provided by these NWP models 
into a Boolean grid marking PCFAs. PCFA calculation relied on the Schmidt–Appleman criterion for contrail formation and 
the ice supersaturation criterion for contrail persistence. Together, we term these conditions “persistent contrail conditions” 
(PCCs). Additionally, we used a satellite-based contrail detection algorithm to evaluate the ground-truth PCFAs. By randomly 
sampling points on the grid and comparing these two sets of PCFAs, we evaluated the capability of NWP models to forecast 
PCFAs.  
 
We used two metrics – precision and recall – which vary between 0 and 1, with 1 indicating optimal performance for a metric. 
Precision indicates the ratio of true positives to the sum of true positives and false positives. In other words, precision 

 

 

 

 



 
 

indicates the number of times that the NWP model correctly forecasts a PCFA divided by the total number of times that the 
NWP model forecasts a PCFA. Recall indicates the ratio of true positives to the sum of true positives and false negatives. In 
other words, recall indicates the number of ground-truth PCFAs that the NWP model was able to forecast divided by the total 
number of ground-truth PCFAs (i.e., including those that the NWP model did not forecast).  
 
We applied this procedure to the NWP product HRRR provided by the National Oceanic and Atmospheric Administration. The 
HRRR has 3-km resolution and is updated hourly. We found that the performance was low, with a precision mean below 1% 
and a recall mean below 50% (see Figure 1.1). 
 
Furthermore, an evaluation of ECMWF Reanalysis v5 (ERA5) wind data was conducted because wind velocities and uncertainty 
play an important role for both contrail nowcasting and contrail-to-flight attribution (as discussed below). The wind 
uncertainty was quantified by comparing ERA5 values with Aircraft Meteorological Data Relay (AMDAR)-reported values. The 
results showed that ERA5 and AMDAR horizontal winds agreed within a root mean square error (RMSE) of less than 3 m/s 
(see Figure 1.2), which is expected given that these measurements are assimilated. We switched from modeling the wind 
uncertainty as a Gaussian distribution with constant standard deviation to using a standard deviation that is a linear function 
of the wind speed as shown below. 
 

𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸5 = 𝛼𝛼|𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸5| + 𝛽𝛽 
 

where 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸5 is the standard deviation of the wind, 𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸5 is the wind velocity, and 𝛼𝛼 and 𝛽𝛽 are parameters determined by 
model fits to the data. We modeled the eastward and northward components of the wind independently. The resulting values 

for 𝛼𝛼 and 𝛽𝛽 are shown in Table 1.1. 
 

Table 1.1. Values for the wind uncertainty model parameters. 
 

Wind component 𝜶𝜶 [-] 𝜷𝜷 [𝐦𝐦/𝐬𝐬] 

Eastward 0.0106 1.7 

Northward 0.0878 1.15 

 
We also assessed the performance of multiple techniques for wind data interpolation by artificially “coarsening” the ERA5 
grid and comparing the interpolated wind values with those at the grid points that were removed. We found that bicubic 
interpolation in the horizontal, quadratic interpolation in the vertical, and linear interpolation in the temporal dimension 
performed best. The results of this evaluation will form part of the basis for incorporating uncertainty into PCFA forecasts, 
a key component of final tool development. 
 

 

 

 

 



 
 

  
 

Figure 1.1. Preliminary estimate of the performance of the ECMWF Reanalysis v5 (ERA5) reanalysis and High-Resolution 
Rapid Refresh (HRRR) forecast, measured by recall (top) and precision (bottom), as a function of forecast lead time. The 
data represent 1,000 randomly sampled time points in 2018 and 2019. FN: false negative; FP: false positive; TP: true 

positive. 
 

 
 

Figure 1.2. Comparison between ERA5 and Aircraft Meteorological Data Relay (AMDAR) horizontal winds. RMSE: root mean 
square error. 

 
 

 

 

 

 



 
 

Development of contrail nowcasting 
Because our metrics indicated that NWP data alone are not sufficient to accurately forecast PCFAs, we investigated 
nowcasting, which is an approach that uses recent contrail observations to forecast PCFAs. For example, if contrails were 
detected in region X, the nowcasting approach would forecast a PCFA in region X, at least for short lead times. The nowcasting 
approach can also include wind data to forecast the advection of the PCFA (see Figure 1.3). Because of this feature, the 
above-mentioned quantification of the ERA5 wind uncertainty was useful. The nowcasting approach relies heavily on the 
contrail identification module (see Task 2). 
 
We investigated two approaches to nowcasting: Eulerian persistence and Lagrangian persistence (see Figure 1.3). In the 
Eulerian persistence approach, we assume that the region in which contrails are detected will continue to be a PCFA for the 
near-term future. In the Lagrangian persistence approach, the PCFAs move horizontally with the wind.  
 

 
 

Figure 1.3. Schematic of two approaches to nowcasting: Eulerian and Lagrangian. The gray lines represent contrail 
detections whereas the regions in solid green and magenta indicate the location of persistent contrail formation areas that 

would be estimated by the nowcasting approach. 
 
The performance of these two nowcasting approaches was compared with that of the two NWP-based models: ERA5 and 
HRRR. The result for the recall metric is shown in Figure 1.4. Compared with Figure 1.1, which shows a preliminary estimation 
of the HRR performance, Figure 1.4 only quantifies the recall metric because an accurate estimation of the precision metric 
depends on work being developed under Task 2, namely combining contrail observations with flight track data. As shown in 
Figure 1.4, and by definition, the nowcasting approaches initially have 100% recall. The plot shows that even though the 
performance of the nowcasting approaches deteriorates quickly with increased lead time, the nowcasting approaches are 
still better for lead times up to 2 h. The ERA5 performance is independent of the lead time (single reanalysis) whereas the 
HRRR performance improves with lead time (differences in assimilated data). 
 
The superior performance of the Eulerian approach compared with the Lagrangian approach reflects three factors. Firstly, 
we know from visual analysis of contrail observations that PCFAs do not move at the same speed as the contrails themselves. 
Because contrails are advected by the wind, the PFCAs move at a separate speed, likely related to the factors that give rise 
to PCFAs in the first place. Secondly, we know that the wind data are imperfect, meaning that advection of the PCFAs based 
on wind data will also suffer from accumulating error. Finally, the definition of a PCFA based on observations is itself 
uncertain (see Task 2), which may introduce different biases for the two approaches. 

 

 

 

 



 
 

 
Figure 1.4. Evaluating the performance of various forecasting approaches as a function of lead time. HRRR: High-

Resolution Rapid Refresh; PCC: persistent contrail condition; ERA5: ECMWF Reanalysis v5. 
 
Based on this assessment, future tool development is focused on contrail nowcasting, with the goal of further leveraging 
observations rather than relying on NWP models. 
 
Milestone 
Milestone 1:  Concept demonstration and first implementation of a contrail forecasting functionality for the FAA [complete]. 
 
Major Accomplishments 

• Evaluated existing NWP models on their ability to predict contrail-forming regions 
• Quantified errors in ERA5 wind velocity and wind shear data that could compromise flight attribution and 

nowcasting components 
• Evaluated the performance of simple nowcasting approaches, comparing them with other NWP models 

 
Publications 
None. 
 
Outreach Efforts 
An oral presentation was given by Vincent Meijer at the 5th International Conference on Transport, Atmosphere and Climate 
in Munich, Germany, hosted by the German Aerospace Center.  

Authors: Vincent R. Meijer, Sebastian D. Eastham, Steven R. H. Barrett  
Title: Using satellite-based observations of contrails to inform contrail avoidance strategies  
One-sentence summary: Comparison of satellite-based observations of contrails with numerical weather prediction 
data indicates that forecasts of persistent contrails are lacking. Short-term approaches that utilize observational 
data of contrails are shown to outperform numerical weather prediction models. 
Date: June 29, 2022  
Publication status: N/A 

 

 

 

 



 
 

Awards 
None. 
 
Student Involvement  
The research for this task was primarily conducted by Vincent Meijer with assistance from Louis Robion, both graduate 
research assistants at MIT. The communication of this research to the FAA was primarily conducted by Jad Elmourad, a 
graduate research assistant at MIT. 
 
Plans for Next Period 

• Develop and evaluate a nowcast of contrail-forming regions based on current inferred conditions, projected winds, 
and a physics-based understanding of contrail-forming regions. 

• Use the improved contrail height estimates (see Task 2) to extend the nowcast of contrail observations from 2D to 
3D.  

• Evaluate the accuracy of forecasts in predicting contrail formation using the new approach developed under the 
contrail identification module. 

 
References 
Rienecker, M. M., Suarez, M. J., Todling, R., Bacmeister, J., Takacs, L., Liu, H. C., & Nielsen, J. E. (2008). The GEOS‐5 Data 

Assimilation System: Documentation of versions 5.0. 1 and 5.1. 0, and 5.2. 0 (NASA Tech. Rep. Series on Global 
Modeling and Data Assimilation, NASA/TM‐2008–104606, Vol. 27, 92 p.). Greenbelt, MD: NASA Goddard Space 
Flight Center. 

 
Task 2 - Contrail Identification Module 
Massachusetts Institute of Technology 
 
Objective 
The objective of Task 2 is to develop a real-time contrail identification module that locates contrails both horizontally and 
vertically. This module will be necessary to evaluate whether contrail avoidance has been successful. Furthermore, this 
module will enable contrail forecasting approaches that are based on contrail detections and that might prove to be more 
reliable for shorter lead times than approaches based on numerical weather forecasts. The initial version will use 
Geostationary Operational Environmental Satellite (GOES) observations combined with a deep learning approach developed 
by MIT (under NASA sponsorship) to identify contrails from space. Future developments could include other satellite 
products, ground observations, and other observations. 
 
Research Approach 
We started with a contrail detection algorithm based on satellite imagery from GOES-16. This algorithm was then used to 
develop a probabilistic estimate of the contrail-forming regions using a kernel density estimation (KDE) approach, building 
on prior NASA-funded work. Flight data were then integrated into the model to improve our estimates. These steps allowed 
the contrails to be located horizontally. Next, we initiated the development of a contrail height estimation algorithm. A 
validation dataset of contrail locations was created to improve the performance of the algorithms. Furthermore, we have 
started integrating temporal data into the contrail detection algorithm. This integration improves the temporal consistency 
of the contrail detections (i.e., a given contrail is detected in every frame of a series of images) and may allow contrails to 
be detected earlier. This latter piece of information would significantly improve our ability to determine which flight created 
the detected contrail and to therefore verify the success of contrail avoidance actions. 
 
Probabilistic approach using KDE 
The initial implementation of a contrail identification module, developed under prior NASA funding, relied on binary PCFAs. 
This implementation was achieved by mapping satellite-observed contrails onto a grid, estimating the region bounded by 
the observed contrails on the grid, and then transforming the grid into a set of polygons based on the density of contrail 
observations. However, we discovered two issues with this approach. First, contrail detections were not temporally 
consistent, which led to polygons that frequently changed shape. Second, this approach did not account for uncertainty in 
the detections and did not make use of prior knowledge about the shape of PCFA regions. For these reasons, we moved 
toward a probabilistic approach. 

 

 

 

 



 
 

Instead of a binary map of PCFAs, we now use a contrail detection mask to generate a KDE. The idea behind this KDE is that 
each contrail “induces” its own probability distribution (the kernel) and that the distributions of multiple contrails may 
interact. One such example is the case of two contrails (see Figure 2.1), where the PCFA probability between the two contrails 
increases as they approach each other. The kernel is parametrized as a multivariate Gaussian distribution. These parameters 
can be used to encode prior knowledge on PCFAs. For example, using three different parameters, the shape of the induced 
KDE can be stretched along the contrail length, perpendicular to the contrail length, or in proportion to the contrail length. 
 

 
 

Figure 2.1. Example of kernel density estimates from contrail detections. The white lines represent contrail detections, and 
the colormap represents the probability of the detection being a persistent contrail formation area. The left plot shows two 

contrails that are far from each other. The right plot shows the interaction of two contrails close to each other. 
 
Integration of flight data 
Contrail detections provide information about contrail locations; however, for a location without any contrail detections, 
there are multiple possible scenarios. One possibility is that the region is not a contrail-forming region whereas the other 
possibility is that no flights have passed through that region. Without integrating flight data into our model, we are not able 
to differentiate between these two scenarios. Therefore, we investigated the integration of flight data to improve the 
probabilistic estimate of PCFA locations.  
 
The advection of flight data was implemented in order to match flight locations at the time that a contrail is detected from 
the satellite. The advection of flight data uses ERA5 wind data, leveraging the ERA5 wind uncertainty model developed under 
Task 1 (discussed above).  
 
The flight density data and probabilistic contrail detections can be combined by using Bayes’ rule to improve our estimate 
of contrail regions. An example is shown in Figure 2.2. This approach provides the desired behavior in three ways. First, 
regions with contrail detections have a high probability of being a PCFA. Second, regions with no contrail detections but with 
high flight density have a low probability of being a PCFA. Finally, regions with no contrail detections and low flight density 
have an intermediate probability of being a PCFA. In the last case, the probability should revert to the climatological mean 
for PCFAs. This approach has shown promise but is still under development. 
 

 

 

 

 



 
 

 
Figure 2.2. Example of applying Bayes’ rule to derive the persistent contrail formation area (PCFA) probability by 

combining contrail detections with flight data. The three plots are maps of the same region, located within the contiguous 
United States (CONUS). The left plot represents flight density, the middle plot represents the contrail detections (with a 

threshold), and the right plot represents the estimated probability of a location being a PCFA. 
 
Creation of a collocated contrail dataset 
Under a prior grant, we developed an automated collocation procedure consisting of contrails detected and matched on both 
GOES Advanced Baseline Imager and NASA Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instruments. This 
procedure was applied to all 2018, 2019, 2020, and 2021 CALIOP overpasses, resulting in a validation dataset of 
approximately 3,200 contrail cross-sections. This dataset is the foundation of our validation efforts, as it provides a ground-
truth dataset of contrail observations including longitude, latitude, altitude, time, width, and depth. 
 
Development of a height estimation algorithm 
Using the validation dataset described above, we performed a quantitative evaluation of state-of-the-art height estimation 
approaches. One such approach has been developed for cirrus clouds (Kox et al., 2012; Strandgren et al., 2017), but we 
found that it does not perform as well on contrails. We found that the RMSE in estimated contrail altitude was 3.3 km, 
approximately four-fold larger on the contrail-only dataset than the cirrus data test set. This precludes accurate identification 
of PCFA altitude, as PCFAs are thought to be on the order of only 500-1,000 m in vertical extent. As a result, we initiated the 
development of a height estimation algorithm targeted at contrails. 
 
We explored two different machine-learning-based models: random forests and neural networks. We found that by training 
an algorithm directly on the contrail dataset, we were able to reduce the RMSE by a factor of 4–5 compared with the algorithm 
trained on the cirrus dataset, yielding the current RMSE of approximately 600 m. Work is ongoing to further reduce this error 
and to broaden our validation dataset. We are also expanding the contrail height estimation algorithm so that it outputs 
additional metrics related to the estimation uncertainty. An example from the algorithm’s test set is shown in Figure 2.3.  

 

 

 

 



 
 

  
Figure 2.3. Example of contrail height estimation. The plot on the left shows a contrail cross-section observed by the 

Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument. The solid red line represents the mean height of 
the contrail estimated by the height estimation algorithm. The dashed red lines represent the mean ± one standard 

deviation. The top right image shows the boundary of the contrail detected on the Geostationary Operational 
Environmental Satellite (GOES) Advanced Baseline Imager. The “x” represents the GOES pixel that was collocated with the 

CALIOP data. The lower right figure shows the pixel-wise output of the height estimation algorithm; specifically, the mean 
height and standard deviation of the contrail are shown. 

 
Integration of temporal data in contrail detections 
Contrail detection masks produced by the detection algorithm are computed independently, meaning that a mask at time 
t+∆t does not use information provided by the detection mask at time t. For a sequence of consecutive GOES-16 images, this 
approach sometimes leads to temporal inconsistencies, where a contrail can be detected at t, not detected at t+5 min, and 
detected again at t+10 min. This motivated work under our NASA Atmospheric Composition Modeling and Analysis Program 
(ACMAP) grant to improve detections, which we are now leveraging, improving, and operationalizing in this work. 
 
To increase the robustness of our contrail detections, in our NASA-funded ACMAP work, we began to implement a Kalman 
filtering approach to smooth the detection signal. This approach relies on our knowledge of advection, which governs the 
movement of contrails, and our observations, which correspond to the detection masks produced by the detection algorithm. 
By combining this information, we seek to construct a contrail detection signal that is more consistent in time than the 
detections alone. 
 
We selected this approach because it is physics-based and does not require additional training data, as required by a machine 
learning model. A machine learning model would need to be trained with a large number of sequences of consecutive GOES 
images in which contrails are manually labeled. Creating a sufficiently large dataset to train such an algorithm would be 
difficult and very time-consuming. Having temporally robust consistent contrail detections may also enable us to identify 
new contrails on GOES images, which would facilitate the validation of a contrail avoidance strategy by simplifying the 
attribution of new contrails to the flights that produced them. 

 

 

 

 



 
 

 
 

Figure 2.4. Example output of the prototype Kalman filter. Given a time series of Geostationary Operational Environmental 
Satellite 16 (GOES-16) mesoscale images, we can detect contrails using the machine learning detection algorithm. These 

contrail detection masks are then used as “observations” to compute filtered detections. Left plot: Sequence of ash 
transforms of GOES-16 images. Right plot: Diagram of the Kalman filter pipeline with contrail detection masks. Machine 
learning detections (top row) are used as an input to the filter. At each timestep, the filter computes a prediction of the 

next state based on the previous filtered output and combines it with the current machine learning detection. This 
produces a new “filtered detection.” The red ovals on the top row highlight a clear false positive detection at T = 1 min. 
The red oval on the bottom row shows that the filtered product assigns a low probability of those pixels being contrails, 

effectively smoothing the detection signal. ML: machine learning. 
 
 

 

 

 

 



 
 

 
Figure 2.5. Two Hovmöller diagrams of a 60-min series of contrail detections and their Fourier transforms. The detection 

mask at each timestep is averaged along the vertical axis, and these data are then concatenated to present a time series of 
the average probability in that direction. We then compute the Fourier transform of each time series for both the machine 
learning detection and the filtered detections. By taking their difference in magnitude, we find that the machine learning 
detection time series contain substantially more high-frequency components than their filtered counterpart, showing the 

smoothing provided by the Kalman filter. ML: machine learning. 
 
The final product of our ACMAP work was a prototype Kalman filter that was capable of smoothing detections, but that had 
not yet been validated against observations, tuned to improve performance, or leveraged to provide operational benefits. 
The work under ASCENT 78 aims to address these issues. 
 
Creation of a contrail-labeled GOES mesoscale sequence 
To evaluate the performance of the Kalman filtering approach, we started labeling a 2-h-long sequence of GOES mesoscale 
images. This GOES product provides images every minute and will allow us to compare a ground-truth sequence of contrail 
labels with those produced by the detection algorithm and Kalman filter. 
 
This labeled sequence will first be used to tune and quantify the performance of the filter. For this step, we are currently 
exploring methods relying on Lagrangian advection of air parcels and wind data from numerical prediction models. Along 
the trajectory of an air parcel, the manual labels and filtered detections indicate whether a point is part of a contrail. We then 
compare the detection series of the filtered output and of the labels for that air parcel. We can tune and quantify the 
performance of the filter based on the similarity of the two series. 
 
For operational use, if the filtered detection were consistent in time, the tracking of individual contrails would be easier. 
Tracking contrails over time would allow us to identify when a contrail has formed, which would facilitate matching the 
contrails to the aircraft that produced them, as it narrows the time window for potential “source” flights. To validate tracking 
and attribution algorithms, we expect to continue using the labeled sequence of contrails. 
 

 

 

 

 



 
 

 
 

Figure 2.6. Ash transform of a Geostationary Operational Environmental Satellite 16 (GOES-16) mesoscale image on 2022-
04-21 at 08:00 UTC. The geostationary image shows what is directly captured by GOES. We reproject the image to an 

orthographic projection centered on the contiguous United States to manually label the contrails (shown in white on the 
right plot). The time series is labeled from 08:00 to 10:00 UTC on 2022-04-21. This time series identifies over 100 

contrails, which can each be tracked individually on the dataset. 
 

Milestone 
Milestone 2: Demonstrate first implementation of a contrail identification module to the FAA [completed]. 
 
Major Accomplishments 

• Developed a KDE approach to extend contrail detections into an estimate of regional contrail formation likelihood  
• Developed an approach to combine advected flight track data and contrail observations in order to evaluate the 

accuracy of contrail-forming region forecasts 
• Created a validation dataset for contrail heights by collocating contrails detected by the GOES Advanced Baseline 

Imager and CALIOP instruments 
• Evaluated the accuracy of the current state-of-the-art approach to contrail height estimation  
• Began development of an improved height estimation approach including an uncertainty metric 
• Developed a preliminary dataset of manually labeled contrails on a sequence of GOES images 
• Began ground-truth evaluation of our Kalman filtering algorithm to enable more accurate filter tuning 
 

Publications 
None. 
 
Outreach Efforts 
An oral presentation was given by Vincent Meijer at the 5th International Conference on Transport, Atmosphere and Climate 
conference in Munich, Germany, hosted by the German Aerospace Center.  

Authors: Vincent R. Meijer, Sebastian D. Eastham, Steven R. H. Barrett  
Title: Using satellite-based observations of contrails to inform contrail avoidance strategies  

 

 

 

 



 
 

One-sentence summary: Comparison of satellite-based observations of contrails with numerical weather prediction 
data indicates that forecasts of persistent contrails are lacking. Short-term approaches that utilize observational 
data of contrails are shown to outperform numerical weather prediction models. 
Date: June 29, 2022  
Publication status: N/A 

 
Awards 
None. 
 
Student Involvement  
The research for this task was primarily conducted by Vincent Meijer and Louis Robion, graduate research assistants at MIT. 
The communication of this research to the FAA was primarily conducted by Jad Elmourad, a graduate research assistant at 
MIT. 
 
Plans for Next Period 

• Extend KDE and flight density construction from 2D to 3D.  
• Investigate the usage of larger-scale NWP variables to improve the contrail height estimation. 
• Complete the development of a filtering method to ensure more accurate contrail detections, including 

operationalization.  
• Finalize and deploy a contrail height estimation technique including an evaluation of accuracy and uncertainty. 
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Task 3 - Contrail Radiation Module 
Massachusetts Institute of Technology 
 
Objective 
The objective of Task 3 is to develop a contrail radiation module. This module will evaluate the warming of individual contrails 
(both existing and counter-factual) by incorporating information on surface albedo, cloud cover, and other factors. The 
contrail radiation module enables us to assess the contrail impact of flight trajectories. Eventually, when integrated with the 
other modules, this module will allow us to extract climate-optimal contrail avoidance strategies. 
 
Research Approach 
In this task, we will develop two main capabilities: (a) simulating contrail formation, persistence, and evolution and (b), 
evaluating the radiative forcing impact of contrails. This module will initially be built on MIT’s Aircraft Plume Chemistry, 
Emissions, and Microphysics Model (APCEMM) (Fritz et al., 2020) and the Contrail Evolution and Radiation Model (Caiazzo et 
al., 2017) and will incorporate recent advances in contrail radiative modeling (Sanz-Morère et al., 2020; Sanz-Morère et al., 
2021). The radiative forcing impact evaluation will be built using Atmospheric Radiation Measurement’s Rapid Radiative 
Transfer Model (RRTM) (Mlawer et al., 1995). Later versions will be calibrated and iteratively improved using measured 
contrail radiative effects from satellite observations, enabling improved cost–benefit assessments. 
 
Overview 
The flow chart in Figure 3.1 gives an overview of the various steps involved in the contrail radiation module, starting from a 
given trajectory and ending with the contrail climate impact of that trajectory. 
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Figure 3.1. Overview of contrail radiation module: steps and outputs. APCEMM: Aircraft Plume Chemistry, Emissions, and 
Microphysics Model; RRTM: Rapid Radiative Transfer Model. 

 
The contrail radiation module starts with an aircraft trajectory, which can be obtained from the trajectory planning module 
(see Task 4). This trajectory goes through a first-pass filter that estimates which segments of the flight will form persistent 
contrails according to the Schmidt–Appleman criterion and ice supersaturation criterion. For those segments, the fuel burn, 
soot mass, soot number, and other properties are obtained. Subsequently, the input files for APCEMM are prepared, which 
includes fetching the relevant weather and aircraft data. Then, the contrail plume is simulated by running APCEMM. The 
simulation outputs a time series of various plume properties, such as ice aerosol volume, particle number, surface area, 
horizontally and vertically integrated optical depths, etc. These outputs are then used to evaluate the time series’ radiative 
forcing of the contrail using the RRTM. 
 
Develop capabilities to simulate contrail formation, persistence, and evolution 
The approach here was to embed APCEMM into a flexible “on-demand” tool to simulate contrails resulting from observed or 
anticipated flights. 
 
The major modifications made to APCEMM during the implementation were related to the weather data. Because weather 
data are used across different modules (and tasks), the choice of weather data must be consistent across the modules. ERA5 
from the European Centre for Medium-Range Weather Forecasts (ECMWF) was used in all of the other modules (contrail 
forecasting, contrail identification, and trajectory planning). However, the Modern Era Retrospective for Research and 
Analysis 2 (MERRA-2) product from NASA’s Global Modeling and Assimilation Office was used in the initial implementation 
of the contrail radiation module. We then switched to ERA5, directly using the same meteorological variables from ECMWF 
when readily available and inferring those which were not readily available. 
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Table 3.1. Variables retrieved for use in the Aircraft Plume Chemistry, Emissions, and Microphysics Model (APCEMM) and 
Rapid Radiative Transfer Model (RRTM). 

 
Variable Unit Used in 

Eastward wind m/s APCEMM 
Northward wind m/s APCEMM 

Pressure Pa APCEMM / RRTM 
Specific humidity kg/kg APCEMM / RRTM 
Air temperature K APCEMM / RRTM 

Geopotential m2/s2 APCEMM / RRTM 
Tropopause pressure Pa RRTM 

Surface albedo for near infrared, diffuse - RRTM 
Surface albedo for near infrared, direct - RRTM 

Surface albedo for visible, diffuse - RRTM 
Surface albedo for visible, direct - RRTM 

Surface emissivity - RRTM 
Fraction of cloud cover - RRTM 

Specific cloud ice water content kg/kg RRTM 
Specific cloud liquid water content kg/kg RRTM 

Specific rain water content kg/kg RRTM 
Specific ice water content kg/kg RRTM 

 
Develop capabilities to evaluate the radiative forcing impact of contrails 
We implemented a high-speed radiative impact estimation approach based on the results from APCEMM simulations, using 
the RRTM. We used 16 wavelength bands for the surface emissivity values that are part of the longwave forcing calculation. 
 
Case study: Applying the contrail radiation module 
We applied the full contrail radiation module to a set of simulated trajectories in order to verify that the components of the 
pipeline are well integrated. An example flight with its resulting contrail climate impact is shown in Figure 3.2, and an 
example of the more detailed outputs of the contrail radiation module are shown in Figure 3.3. 
 

 
 

Figure 3.2. Example of applying the contrail radiation module to a flight trajectory. The trajectory is split into two parts 
(left and right). In each plot, the solid black region represents persistent contrail formation areas (PCFAs) (here, only a 

binary persistent contrail condition [PCC] map is considered), the blue line represents the flight trajectory, the orange line 
represents the section of the flight trajectory that is being considered, the dashed red lines represent the ECMWF Renalysis 
v5 (ERA5) pressure levels at which weather data are provided, and the green dashed line highlights the ERA5 pressure level 
that is nearest to the flight section under consideration. In the title of each subplot, the contrail energy forcing per contrail 

length is given as well as the total contrail energy forcing per flight segment. 

 

 

 

 



 
 

 

 
Figure 3.3. Example output from applying the contrail radiation module to one point along a flight trajectory. The top plot 
shows the radiative forcing impact of the contrail, separated into its warming longwave (LW) and cooling shortwave (SW) 
components. The x-axis is time. The middle plot shows the evolution of the contrail ice mass, and the bottom plot shows 

that of the contrail ice crystal number. All values are given per unit contrail distance.  
 
Milestone 
Milestone 3: Demonstrate a first implementation of the contrail radiation module to the FAA [completed]. 
 
Major Accomplishments 

• Developed a pipeline to simulate contrail formation and evolution along projected flight tracks using an 
intermediate-fidelity contrail model (APCEMM)  

• Integrated a radiative transfer model to run on the results from the APCEMM simulation 
• Modified APCEMM and radiative impact estimation approach to use different meteorological data (ECMWF forecast 

instead of MERRA-2 reanalysis) 
• Applied the entire contrail radiation pipeline (contrail plume simulation and radiative impact estimation) on a set 

of simulated trajectories output by the trajectory module 
• Performed preliminary comparisons of the outputs of the contrail radiation module with other literature studies 

and models   
 
These accomplishments will enable further development of the contrail radiation module in order to obtain a faster working 
module based on the heuristic approach described below. 
 
Publications 
None. 
 
 

 

 

 

 



 
 

Outreach Efforts 
None. 

 
Awards 
None. 
 
Student Involvement  
This task was primarily conducted by Jad Elmourad, a graduate research assistant at MIT. 
 
Plans for Next Period 
Heuristic approach 
Applying the contrail radiation module to a set of trajectories made it clear that there is a large computational cost for 
running the plume simulation using APCEMM and the radiative forcing calculation using RRTM. In order to align with this 
project’s goal of enabling near-real-time decision-making, we decided to pursue the development of a faster simulation 
approach that would not largely compromise accuracy. This approach will be based on heuristics derived from more detailed 
calculations, i.e., using the capabilities developed above. 
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Task 4 - Trajectory Planning Module 
Massachusetts Institute of Technology 
 
Objective 
The objective of Task 4 is to develop a trajectory planning module that will forecast fuel burn and emissions as a function 
of the spectrum of potential flight paths that will be taken. The initial version will consider conventional fuel, CO2 emissions, 
and vertical altitude deviations, but each of these categories can be expanded in the future. The module will initially focus 
on one common aircraft type. 
 
Research Approach 
 
Development of trajectory optimization 
As input, the trajectory optimization module will take an origin–destination pair, departure time, weather data, and airplane 
performance data. The module will then output a set of trajectories based on varying degrees of contrail avoidance. For each 
route, it will output the fuel burn, distance traveled through contrail-forming regions, and flight time. 
 
ERA5 weather data from ECMWF will be used in the initial development; these data will primarily include temperature, relative 
humidity, and wind velocity. The former two meteorological variables have been used to determine the regions that form 
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persistent contrails; however, in the future, this submodule could be replaced with the contrail forecasting module (see Task 
1).  
 
MIT’s Transport Aircraft System OPTimization (TASOPT) tool (Drela, 2011) was used to determine airplane and engine 
performance metrics such as fuel flow rates during climb and cruise, climb and descend rates, air–fuel ratios, true airspeed, 
and exhaust gas temperatures. A single aircraft type was used, with its performance metrics calculated for different operating 
conditions. The operating conditions were specified by the altitude and aircraft gross weight. 
 
The optimization followed a graph-based approach in which a uniform-cost search algorithm was implemented. The airspace 
at cruise between the origin–destination airports was mapped onto a 2D grid. One dimension was the altitude, and the other 
dimension was the distance traveled along the lateral track. In this initial development phase, the lateral track of the aircraft 
was fixed to the great circle route; however, future implementations could expand this approach to allow for horizontal 
deviations. 
 
The initial formulation of the cost function was a weighted sum of fuel burn and contrail length, as shown below. 
 

𝐽𝐽 = 𝐶𝐶 × 𝜃𝜃 + F × (1 − 𝜃𝜃) 
 

where 𝐽𝐽 is the cost function, 𝐶𝐶 is the contrail length, F is the fuel burn, and 𝜃𝜃 is the tradeoff parameter that determines the 
degree of contrail avoidance. 
 

    𝜃𝜃 = 0 : gives the baseline case, in which the flight is optimized for fuel burn 

𝜃𝜃 = 1 : gives the maximum contrail avoidance case 
 

The parameter 𝜃𝜃 can be varied between 0 and 1 in order to simulate different degrees of contrail avoidance. 
 
Application 
We applied the trajectory planning module to a large set of global flights in order to assess the fuel burn penalty associated 
with contrail avoidance (targeted at contrail length minimization). We sampled 100,000 random flights from the 2019 flight 
schedule operated by a narrow-body aircraft fleet. The aircraft performance model was based on a single-aisle aircraft 
approximating the Boeing 737 MAX 9. 
 
The results are shown in Figure 4.1. We found that 98% of contrail length can be avoided by exclusively using vertical re-
routing. Furthermore, contrail avoidance costs an additional 0.3% in fuel on average, when considered from a fleet-wide 
perspective, and 1% in fuel if only the contrail-forming flights are considered. 
 
 

 

 

 

 



 
 

 
 

Figure 4.1. Tradeoff between avoided contrail length and fuel burn penalty for a Boeing 737 MAX 9 for a full year of global 
operations. The results are presented for two cases: for the entire fleet (solid line) and for only contrail-forming flights 
(dashed line). Results from other studies are included for comparison, even though the studies differ in their approach 

(type of deviation, fuel model, weather data, region, routes, and scale). 
 
Furthermore, we studied the impact of constraining the maximum fuel penalty per flight. We found that limiting the 
maximum fuel penalty per flight to 5% did not significantly affect the amount of contrail reduction obtained. Imposing this 
limit reduced the avoided contrail length by 0.9% and the fleet-wide fuel burn penalty by <0.1%. However, this step ensures 
that no single flight is encouraged to make large deviations, reducing the possibility of a large inadvertent penalty. This is 
particularly important given the level of uncertainty in PCFA predictions. 
  

 

 

 

 



 
 

 
 

Figure 4.2. Impact of constraining the maximum fuel penalty per flight. The x-axis shows the fuel penalty constraint that 
was applied. The left axis and blue line show the percentage of contrail length avoided. The right axis and orange line 

show the fleet-wide fuel burn penalty. 
 
At this stage, the trajectory planning module is focused on contrail length minimization. However, we intend to integrate 
this module with the contrail radiation module to develop the capability for trajectory optimization focused on climate impact 
(contrail and CO2 energy forcing). For this purpose, we will combine both the current trajectory planning and contrail radiation 
modules in an optimization loop with multiple hierarchical levels. The trajectory planning component will generate 
trajectories and determine the order for exploring possible trajectories according to the best-known contrail impacts at the 
time. These trajectories will then be passed to the contrail radiation component, which will refine the estimates of the contrail 
impacts and send them back to the trajectory planning component. This procedure will loop until certain convergence criteria 
are reached. 
 
Milestone 
Milestone 4: Demonstrate the first implementation of a trajectory optimization module to the FAA [completed]. 
 
Major Accomplishments 

• Developed a trajectory model to simulate flights with differing degrees of contrail avoidance 
• Performed preliminary estimates of the fuel burn penalty associated with limited vertical deviations using weather 

data 
 
Publications 
None. 
 
Outreach Efforts 
A poster presentation on ASCENT 78 was delivered to the 5th International Conference on Transport, Atmosphere and 
Climate conference in Munich, Germany, hosted by the German Aerospace Center.  

Authors: Jad Elmourad, Sebastian D. Eastham, Raymond L. Speth, Florian Allroggen, Steven R. H. Barrett  
Title: Flight Level Optimization for Contrail Avoidance  
One-sentence summary: Preliminary results regarding the contrail–CO2 tradeoffs associated with contrail 
avoidance. 
Date: June 27–30, 2022  
Publication status: N/A (poster presentation)  

 

 

 

 



 
 

FAA support was acknowledged. 
 
Awards 
None. 
 
Student Involvement  
This task was primarily conducted by Jad Elmourad, a graduate research assistant at MIT. 
 
Plans for Next Period 

• Integrate the contrail forecasting module after it is completed to replace the current calculation of PCCs. 
• Extend the module to incorporate lateral deviations. 
• Integrate this module with the contrail radiation module in order to directly optimize for climate impact. 
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